Reg. No.:	di	istic	niar (e)	a De	76	e (s	1.0

Question Paper Code: 90417

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.

Fifth Semester

Computer Science and Engineering

CS 8501 — THEORY OF COMPUTATION

(Common to: Computer Science and Business Systems)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Prove: 1+2+...+n=n(n+1)/2 using mathematical induction.
- 2. Define: ε -closure of a state.
- 3. State: Pumping lemma for regular languages.
- 4. Consider the following languages. $L1 = \{ab, abb, abbb,\}$ and $L2 = \Phi$ (empty language). Identify the list of strings that are part of the language created by L1.L2~UL2*
- 5. When do you say that given grammar G is ambiguous?
- 6. Draw a PDA to accept strings of the language, $L = \{a^n c b^n | n >= 0\}$
- 7. What is the necessity of forming normal forms of an CFG?
- 8. List the properties of CFL that are closed.
- 9. Define "Non-Recursive" languages.
- 10. Write the significance of NP problems.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Draw a Deterministic Finite Automata recognizing the language containing string that are multiples of 4 when represented in binary. Test your DFA using any two strings of the language.

Or

- (b) Draw a Deterministic Finite Automata recognizing the language corresponding to the regular expression $(a+bca^*)^*$. Test your DFA using any two strings of the language.
- 12. (a) Prove the following statement with justification.

"The language $L = \{a^i b^j c^i \mid i, j > 0\}$ is not regular".

Or

(b) Minimize the given automata, G. [Refer Figure. 12(b)]

Figure. 12(b)

13. (a) Examine whether the language, $L = \{a^n b^p c^n d^{2p} \mid n > 0\}$ can be designed using Pushdown automation. Justify your answer.

Or

- (b) Examine whether the language, $L = \{a^{2n}b^pc^{2n} \mid n > 0\}$ can be designed using Pushdown automation. Justify your answer.
- 14. (a) Convert the following grammar to be in Chomsky Normal Form.

 $S \rightarrow A \alpha A$

 $A \rightarrow aaBa \mid CDA \mid CD$

 $B \rightarrow bB$

 $C \rightarrow Ca \mid D$

 $D \rightarrow bD \mid \in$

Or

(b) Design a Turing machine to perform the following function, f(x) = 2x + 2, x > 0.

15. (a) State and prove the halting problem.

Or

(b) State whether the instances of the Post Correspondence Problem (PCP) have a solution. The following are the instances with $\Sigma = \{0,1\}$.

Index	List A	List B		
1	10	01		
2	110	011		
3	110	01		
4	000	00		
5	10	010		

In case the PCP has a solution, describe the post-correspondence solution with justification.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Identify the type of grammar as per Chomsky's hierarchy and design an appropriate automation model.

$$S \rightarrow aSBC$$
 $S \rightarrow aBC$
 $CB \rightarrow BC$ $aB \rightarrow ab$
 $bB \rightarrow bb$ $bC \rightarrow bc$
 $cC \rightarrow dd$

Or

(b) Identify the type of grammar as per Chomsky's hierarchy and design an appropriate automation model.

$$S \rightarrow aSBC$$
 $S \rightarrow aBC$
 $CB \rightarrow BC$ $aB \rightarrow ab$
 $bB \rightarrow bb$ $bC \rightarrow bcc$
 $cC \rightarrow cccc$